近年来,基于高通量测序的基因组拷贝数变异测序技术(Copy Number Variation sequencing,CNV-seq)可对染色体数目异常、大片段缺失/重复及致病性拷贝数变异进行检测,在产前诊断、辅助生殖、儿科遗传病辅助诊断等领域得到了广泛应用。
为助力临床精准诊断,j9九游会真人游戏第一品牌在常规CNV-seq检测23对染色体非整倍体和>100Kb染色体拷贝数变异的基础上进行优化升级,同步推出检测试剂盒(RUO)和LDT检测服务。CNV-seq plus不仅能实现特定UPD检测、三倍体检测和母源污染鉴定,还能为临床提供本土化样本检测、数据解读和报告生成的一体化解决方案,进一步助力临床提高诊疗效率。
CNV-seq检测ROH的目的:筛查UPD
什么是ROH?
基因组纯合区域(regions of homozygosity, ROH)是指基因组区域中一定范围内连续呈现的杂合性丢失的现象。对于大部分的二倍体细胞如人类体细胞,拥有两份基因组,一份来自于父亲,另一份来自于母亲。在某一个等位基因位点上,如果来自父本和母本的碱基不同时,则该位点为杂合(heterozygous);如果因为某种机制(如远亲关系或近亲关系婚姻或基因转换)导致在一定范围内连续的等位基因序列都是纯合子而无杂合子(拷贝数仍为 2 个),则该区域为ROH。如检出多条染色体上均存在大片段 ROH 时需考虑父母亲缘关系(consanguinity);如果仅在一条染色体发现≥10Mb的ROH,应优先考虑单亲二体(uniparental disomy,UPD)的可能【1,2】。
什么是UPD?
UPD是指一个个体的两条同源染色体都来自同一亲本,或来自父母一方的染色体片段被另一方的同源部分取代。UPD的产生机制主要有三体细胞自救、单体细胞的自身复制(单体自救)等【3】。Nakka等【4】对440多万份样本研究后发现,UPD在活产儿中的发生率可达1/2000。当UPD出现在基因印记区域时,子代可能会遗传两个均有表达活性的等位基因,也可能遗传两个表达沉默的等位基因,从而导致基因剂量表达异常。
目前已知当第 6、7、11、14、15及20号染色体存在UPD时,可通过基因组印迹障碍导致疾病的发生【5】。常见的UPD综合征及主要表型详见表1,其中Angelman 综合征发病率约为1/20,000-1/12,000【6】,临床表型包括小头,共济失调,癫痫,智力发育迟滞,语言能力差,微笑面容。
为什么要检测UPD?
大多数染色体UPD没有临床表型,当UPD发生在印记基因区域则会导致印记基因异常,出现异常的表型。目前针对上述UPD综合征(表1)尚无有效的治疗手段,因此,早发现、早诊断、早干预对于此类疾病的防控尤为重要。
产前筛查或诊断中如果发现涉及第 6、7、11、14、15及20号染色体的嵌合、NIPT筛查三体高风险或相关超声异常(如父源性14号染色体UPD的特殊钟形胸廓)或涉及14、15号染色体的罗伯逊易位、平衡易位等,应考虑进行UPD检测。2020年ACMG指南发布了关于UPD产前诊断的声明【7】,建议对如下人群在产前诊断时应检测UPD:孕妇高龄;采用PGT助孕,打算植入有印记染色体嵌合胚胎;穿刺绒毛或穿刺羊水提示印记染色体三体或单体嵌合;产前超声异常与某种UPD疾病表型一致;绒毛穿刺或羊水穿刺提示存在遗传的或新发的涉及14号或15号染色体的罗氏易位或者等臂染色体;新发的小标记染色体(sSMC),但不带有明显常染色质;发生在非罗氏易位的印迹染色体的3:1分离可能导致三体或单体挽救或配子补救。
UPD的检测方法
UPD的检测方法主要包括STR分型技术、SNP分型技术、甲基化PCR与甲基化MLPA 技术。其中最为经典的是STR分析,但通常不用于一线筛查,商业化的STR检测试剂盒仅检测特定的STR位点,难以覆盖常见的UPD综合征。基于SNP分型的UPD检测技术主要包括染色体微阵列分析技术(chromosomal microarray analysis, CMA)、全外显子组测序等方法,通过分析SNP位点的杂合性识别ROH,仅适用于单亲同二体型的UPD检测,检测灵敏性和分辨率与SNP探针的密度和分布有关。甲基化PCR和MLPA技术直接针对目标UPD综合征相关的关键印记基因的甲基化状态进行分析,对于病因的确诊有重要意义,通常用于UPD验证。
打破技术局限,j9九游会真人游戏第一品牌自主研发基于CNV-seq测序数据的ROH检测系统
CNV-seq技术是基于低深度全基因组测序的新一代拷贝数变异检测方法,具有通量高、操作简便、兼容性高等优势,对于小的CNV以及低比例嵌合的CNV具有良好的检测效能,在临床得到了广泛的应用。但是,业内普遍认为CNV-seq技术仅适用于染色体拷贝数变异的检测,无法检测单亲二倍体UPD在内的ROH,这在一定程度上限制了CNV-seq在产前诊断中的应用。2019年4月发布的《低深度全基因组测序技术在产前诊断中的应用专家共识》【8】建议,临床高度怀疑胎儿为单亲二倍体时,应结合STR或 SNP array等技术进行检测。
目前临床应用的CNV-seq测序技术覆盖的SNP位点reads的平均深度1X左右,难以识别UPD和ROH。通过提高测序深度,或基于高深度测序法虽然可以解决UPD和ROH的检测问题,但测序成本会随着测序深度的增加而大幅增加。因此,如何使用低测序深度的数据满足ROH/UPD的检测需要,是一项极具挑战的工作。
针对上述难题,j9九游会真人游戏第一品牌的研究科学家们开发了基于全基因组低深度测序CNV-seq的ROH检测技术,此项技术于2020年8月获发明专利授权(ZL202010896507.5)。本方法基于生物信息学分析方法的创新实现ROH的检测,在不增加测序深度、测序成本和实验操作的情况下,能支持深度低至0.1~0.2X的ROH检测。研究组基于临床CNV-seq 0.15~0.4X的测序深度数据开创性地提出SNP混合杂合度指标(SMHS)的计算方法,表明在极低测序深度下(低至0.2X覆盖深度),虽然每个SNP位点的基因型不可知,但是通过合并计算N个SNP杂合信息,计算SMHS得分可以检测多倍体和ROH。该算法打破了现有低平均测序深度数据不能用于判断ROH和多倍体的局限,这意味着不增加检测数据量的条件下就可以分析多倍体和ROH区域,不仅能显著降低检测成本还能缩短检测周期,给产前诊断工作和社会带来巨大效益。
图1 j9九游会真人游戏第一品牌基于CNV-seq测序数据检测多倍体和基因组纯合区域ROH的系统专利技术
j9九游会真人游戏第一品牌CNV-seq系列产品全面升级,在原有产品检测23对染色体非整倍体、100Kb以上缺失/重复的基础上,新开发了特有的生信算法并获得专利授权,新增基因组纯合区域ROH检测,可提示全基因组UPD和10种>10Mb的致病性ROH;此外,j9九游会真人游戏第一品牌自主研发的基于BES4000的SNP分型技术有效提示三倍体异常和定量鉴定5%以上的样本交叉污染,为临床提供更具性价比的检测产品,为出生缺陷精准防控提供更全面的解决方案。
升级产品介绍
参考文献
[1] Armour CM , Dougan SD , Brock JA , et al. Practice guideline: joint CCMG-SOGC recommendations for the use of chromosomal microarray analysis for prenatal diagnosis and assessment of fetal loss in Canada[J]. Journal of Medical Genetics, 2018, 55(4): 215-221.
[2] Papenhausen P, Schwartz S, Risheg H, et al. UPD detection using homozygosity profiling with a SNP genotyping microarray[J]. Am J Med Genet A, 2011, 155A(4): 757-768.
[3] 刘维强, 孙路明, 沈亦平. 染色体三体、嵌合体及单亲二体的产前诊断和遗传咨询[J].中国产前诊断杂志(电子版),2020,12(02):1-5.
[4] Nakka P, Smith SP, O'Donnell-Luria AH, et al. Characterization of Prevalence and Health Consequences of Uniparental Disomy in Four Million Individuals from the General Population[J]. Am J Hum Genet, 2019, 105(5):921-932.
[5] Gaudio DD, Shinawi M, Astbury C, et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG)[J]. Genet Med, 2020, 22(7):1133-1141.
[6] Dagli A, Buiting K, Williams CA. Molecular and Clinical Aspects of Angelman Syndrome[J]. Mol Syndromol,201, 2(3-5): 100-112.
[7] Gaudio DD, Shinawi M, Astbury C, et al. Diagnostic testing for uniparental disomy: a points to consider statement from the American College of Medical Genetics and Genomics (ACMG)[J]. Genetics in Medicine, 2020, 22(7): 1133-1141.
[8] 中华医学会医学遗传学分会临床遗传学组, 中国医师协会医学遗传医师分会遗传病产前诊断专业委员会, 中华预防医学会出生缺陷预防与控制专业委员会遗传病防控学组. 低深度全基因组测序技术在产前诊断中的应用专家共识[J]. 中华医学遗传学杂志,2019; 36(4): 293-296.